|
enum | { eL = 1
, eM
, eN
} |
| Moments L, M, N. More...
|
|
enum | { eP = 1
, eQ
, eR
} |
| Rates P, Q, R. More...
|
|
enum | { eU = 1
, eV
, eW
} |
| Velocities U, V, W. More...
|
|
enum | { eX = 1
, eY
, eZ
} |
| Positions X, Y, Z. More...
|
|
enum | { ePhi = 1
, eTht
, ePsi
} |
| Euler angles Phi, Theta, Psi. More...
|
|
enum | { eDrag = 1
, eSide
, eLift
} |
| Stability axis forces, Drag, Side force, Lift. More...
|
|
enum | { eRoll = 1
, ePitch
, eYaw
} |
| Local frame orientation Roll, Pitch, Yaw. More...
|
|
enum | { eNorth = 1
, eEast
, eDown
} |
| Local frame position North, East, Down. More...
|
|
enum | { eLat = 1
, eLong
, eRad
} |
| Locations Radius, Latitude, Longitude. More...
|
|
enum | {
inNone = 0
, inDegrees
, inRadians
, inMeters
,
inFeet
} |
| Conversion specifiers. More...
|
|
static const std::string & | GetVersion (void) |
| Returns the version number of JSBSim.
|
|
static constexpr double | KelvinToFahrenheit (double kelvin) |
| Converts from degrees Kelvin to degrees Fahrenheit.
|
|
static constexpr double | CelsiusToRankine (double celsius) |
| Converts from degrees Celsius to degrees Rankine.
|
|
static constexpr double | RankineToCelsius (double rankine) |
| Converts from degrees Rankine to degrees Celsius.
|
|
static constexpr double | KelvinToRankine (double kelvin) |
| Converts from degrees Kelvin to degrees Rankine.
|
|
static constexpr double | RankineToKelvin (double rankine) |
| Converts from degrees Rankine to degrees Kelvin.
|
|
static constexpr double | FahrenheitToCelsius (double fahrenheit) |
| Converts from degrees Fahrenheit to degrees Celsius.
|
|
static constexpr double | CelsiusToFahrenheit (double celsius) |
| Converts from degrees Celsius to degrees Fahrenheit.
|
|
static constexpr double | CelsiusToKelvin (double celsius) |
| Converts from degrees Celsius to degrees Kelvin.
|
|
static constexpr double | KelvinToCelsius (double kelvin) |
| Converts from degrees Kelvin to degrees Celsius.
|
|
static constexpr double | FeetToMeters (double measure) |
| Converts from feet to meters.
|
|
static double | PitotTotalPressure (double mach, double p) |
| Compute the total pressure in front of the Pitot tube.
|
|
static double | MachFromImpactPressure (double qc, double p) |
| Compute the Mach number from the differential pressure (qc) and the static pressure.
|
|
static double | VcalibratedFromMach (double mach, double p) |
| Calculate the calibrated airspeed from the Mach number.
|
|
static double | MachFromVcalibrated (double vcas, double p) |
| Calculate the Mach number from the calibrated airspeed.Based on the formulas in the US Air Force Aircraft Performance Flight Testing Manual (AFFTC-TIH-99-01).
|
|
static bool | EqualToRoundoff (double a, double b) |
| Finite precision comparison.
|
|
static bool | EqualToRoundoff (float a, float b) |
| Finite precision comparison.
|
|
static bool | EqualToRoundoff (float a, double b) |
| Finite precision comparison.
|
|
static bool | EqualToRoundoff (double a, float b) |
| Finite precision comparison.
|
|
static constexpr double | Constrain (double min, double value, double max) |
| Constrain a value between a minimum and a maximum value.
|
|
static constexpr double | sign (double num) |
|
static double | GaussianRandomNumber (void) |
|
static char | highint [5] = {27, '[', '1', 'm', '\0' } |
| highlights text
|
|
static char | halfint [5] = {27, '[', '2', 'm', '\0' } |
| low intensity text
|
|
static char | normint [6] = {27, '[', '2', '2', 'm', '\0' } |
| normal intensity text
|
|
static char | reset [5] = {27, '[', '0', 'm', '\0' } |
| resets text properties
|
|
static char | underon [5] = {27, '[', '4', 'm', '\0' } |
| underlines text
|
|
static char | underoff [6] = {27, '[', '2', '4', 'm', '\0' } |
| underline off
|
|
static char | fgblue [6] = {27, '[', '3', '4', 'm', '\0' } |
| blue text
|
|
static char | fgcyan [6] = {27, '[', '3', '6', 'm', '\0' } |
| cyan text
|
|
static char | fgred [6] = {27, '[', '3', '1', 'm', '\0' } |
| red text
|
|
static char | fggreen [6] = {27, '[', '3', '2', 'm', '\0' } |
| green text
|
|
static char | fgdef [6] = {27, '[', '3', '9', 'm', '\0' } |
| default text
|
|
static short | debug_lvl = 1 |
|
static std::string | CreateIndexedPropertyName (const std::string &Property, int index) |
|
static Message | localMsg |
|
static std::queue< Message > | Messages |
|
static unsigned int | messageId = 0 |
|
static constexpr double | radtodeg = 180. / 3.14159265358979323846 |
|
static constexpr double | degtorad = 3.14159265358979323846 / 180. |
|
static constexpr double | hptoftlbssec = 550.0 |
|
static constexpr double | psftoinhg = 0.014138 |
|
static constexpr double | psftopa = 47.88 |
|
static constexpr double | ktstofps = 1.68781 |
|
static constexpr double | fpstokts = 1.0 / ktstofps |
|
static constexpr double | inchtoft = 1.0/12.0 |
|
static constexpr double | fttom = 0.3048 |
|
static constexpr double | m3toft3 = 1.0/(fttom*fttom*fttom) |
|
static constexpr double | in3tom3 = inchtoft*inchtoft*inchtoft/m3toft3 |
|
static constexpr double | inhgtopa = 3386.38 |
|
static constexpr double | slugtolb = 32.174049 |
| Note that definition of lbtoslug by the inverse of slugtolb and not to a different constant you can also get from some tables will make lbtoslug*slugtolb == 1 up to the magnitude of roundoff.
|
|
static constexpr double | lbtoslug = 1.0/slugtolb |
|
static constexpr double | kgtolb = 2.20462 |
|
static constexpr double | kgtoslug = 0.06852168 |
|
static const std::string | needed_cfg_version = "2.0" |
|
static const std::string | JSBSim_version = JSBSIM_VERSION " " __DATE__ " " __TIME__ |
|
static int | gaussian_random_number_phase = 0 |
|
Encapsulates a Sensor component for the flight control system.
Syntax:
<input> property </input>
<noise [variation="PERCENT|ABSOLUTE"] [distribution="UNIFORM|GAUSSIAN"]> number </noise>
<quantization
name=
"name">
</quantization>
</sensor>
Example:
<sensor
name=
"aero/sensor/qbar">
<input> aero/qbar </input>
<noise variation="PERCENT"> 2 </noise>
<quantization
name=
"aero/sensor/quantized/qbar">
</quantization>
</sensor>
The only required element in the sensor definition is the input element. In that case, no degradation would be modeled, and the output would simply be the input.
Noise can be Gaussian or uniform, and the noise can be applied as a factor (PERCENT) or additively (ABSOLUTE). The noise that can be applied at each frame of the simulation execution is calculated as a random factor times a noise value that is specified in the config file. When the noise distribution type is Gaussian, the random number can be between roughly -3 and +3 for a span of six sigma. When the distribution type is UNIFORM, the random value can be between -1.0 and +1.0. This random value is multiplied against the specified noise to arrive at a random noise value for the frame. If the noise type is PERCENT, then random noise value is added to one, and that sum is then multiplied against the input signal for the sensor. In this case, the specified noise value in the config file would be expected to actually be a percent value, such as 0.05 (for a 5% variance). If the noise type is ABSOLUTE, then the random noise value specified in the config file is understood to be an absolute value of noise to be added to the input signal instead of being added to 1.0 and having that sum be multiplied against the input signal as in the PERCENT type. For the ABSOLUTE noise case, the noise number specified in the config file could be any number.
If the type is ABSOLUTE, then the noise number times the random number is added to the input signal instead of being multiplied against it as with the PERCENT type of noise.
The delay element can specify a frame delay. The integer number provided is the number of frames to delay the output signal.
- Author
- Jon S. Berndt
- Version
- Revision
- 1.24
Definition at line 127 of file FGSensor.h.