FlightGear next
JSBSim::FGGain Class Reference

Encapsulates a gain component for the flight control system. More...

#include <FGGain.h>

Inherits JSBSim::FGFCSComponent.

Public Member Functions

 FGGain (FGFCS *fcs, Element *element)
 
 ~FGGain ()
 
bool Run (void) override
 
- Public Member Functions inherited from JSBSim::FGFCSComponent
 FGFCSComponent (FGFCS *fcs, Element *el)
 Constructor.
 
virtual ~FGFCSComponent ()
 Destructor.
 
virtual void SetOutput (void)
 
double GetOutput (void) const
 
std::string GetName (void) const
 
std::string GetType (void) const
 
virtual double GetOutputPct (void) const
 
virtual void ResetPastStates (void)
 
- Public Member Functions inherited from JSBSim::FGJSBBase
 FGJSBBase ()
 Constructor for FGJSBBase.
 
virtual ~FGJSBBase ()
 Destructor for FGJSBBase.
 
void PutMessage (const Message &msg)
 Places a Message structure on the Message queue.
 
void PutMessage (const std::string &text)
 Creates a message with the given text and places it on the queue.
 
void PutMessage (const std::string &text, bool bVal)
 Creates a message with the given text and boolean value and places it on the queue.
 
void PutMessage (const std::string &text, int iVal)
 Creates a message with the given text and integer value and places it on the queue.
 
void PutMessage (const std::string &text, double dVal)
 Creates a message with the given text and double value and places it on the queue.
 
int SomeMessages (void) const
 Reads the message on the queue (but does not delete it).
 
void ProcessMessage (void)
 Reads the message on the queue and removes it from the queue.
 
MessageProcessNextMessage (void)
 Reads the next message on the queue and removes it from the queue.
 
void disableHighLighting (void)
 Disables highlighting in the console output.
 

Additional Inherited Members

- Public Types inherited from JSBSim::FGJSBBase
enum  { eL = 1 , eM , eN }
 Moments L, M, N. More...
 
enum  { eP = 1 , eQ , eR }
 Rates P, Q, R. More...
 
enum  { eU = 1 , eV , eW }
 Velocities U, V, W. More...
 
enum  { eX = 1 , eY , eZ }
 Positions X, Y, Z. More...
 
enum  { ePhi = 1 , eTht , ePsi }
 Euler angles Phi, Theta, Psi. More...
 
enum  { eDrag = 1 , eSide , eLift }
 Stability axis forces, Drag, Side force, Lift. More...
 
enum  { eRoll = 1 , ePitch , eYaw }
 Local frame orientation Roll, Pitch, Yaw. More...
 
enum  { eNorth = 1 , eEast , eDown }
 Local frame position North, East, Down. More...
 
enum  { eLat = 1 , eLong , eRad }
 Locations Radius, Latitude, Longitude. More...
 
enum  {
  inNone = 0 , inDegrees , inRadians , inMeters ,
  inFeet
}
 Conversion specifiers. More...
 
static const std::string & GetVersion (void)
 Returns the version number of JSBSim.
 
static constexpr double KelvinToFahrenheit (double kelvin)
 Converts from degrees Kelvin to degrees Fahrenheit.
 
static constexpr double CelsiusToRankine (double celsius)
 Converts from degrees Celsius to degrees Rankine.
 
static constexpr double RankineToCelsius (double rankine)
 Converts from degrees Rankine to degrees Celsius.
 
static constexpr double KelvinToRankine (double kelvin)
 Converts from degrees Kelvin to degrees Rankine.
 
static constexpr double RankineToKelvin (double rankine)
 Converts from degrees Rankine to degrees Kelvin.
 
static constexpr double FahrenheitToCelsius (double fahrenheit)
 Converts from degrees Fahrenheit to degrees Celsius.
 
static constexpr double CelsiusToFahrenheit (double celsius)
 Converts from degrees Celsius to degrees Fahrenheit.
 
static constexpr double CelsiusToKelvin (double celsius)
 Converts from degrees Celsius to degrees Kelvin.
 
static constexpr double KelvinToCelsius (double kelvin)
 Converts from degrees Kelvin to degrees Celsius.
 
static constexpr double FeetToMeters (double measure)
 Converts from feet to meters.
 
static double PitotTotalPressure (double mach, double p)
 Compute the total pressure in front of the Pitot tube.
 
static double MachFromImpactPressure (double qc, double p)
 Compute the Mach number from the differential pressure (qc) and the static pressure.
 
static double VcalibratedFromMach (double mach, double p)
 Calculate the calibrated airspeed from the Mach number.
 
static double MachFromVcalibrated (double vcas, double p)
 Calculate the Mach number from the calibrated airspeed.Based on the formulas in the US Air Force Aircraft Performance Flight Testing Manual (AFFTC-TIH-99-01).
 
static bool EqualToRoundoff (double a, double b)
 Finite precision comparison.
 
static bool EqualToRoundoff (float a, float b)
 Finite precision comparison.
 
static bool EqualToRoundoff (float a, double b)
 Finite precision comparison.
 
static bool EqualToRoundoff (double a, float b)
 Finite precision comparison.
 
static constexpr double Constrain (double min, double value, double max)
 Constrain a value between a minimum and a maximum value.
 
static constexpr double sign (double num)
 
static double GaussianRandomNumber (void)
 
- Static Public Attributes inherited from JSBSim::FGJSBBase
static char highint [5] = {27, '[', '1', 'm', '\0' }
 highlights text
 
static char halfint [5] = {27, '[', '2', 'm', '\0' }
 low intensity text
 
static char normint [6] = {27, '[', '2', '2', 'm', '\0' }
 normal intensity text
 
static char reset [5] = {27, '[', '0', 'm', '\0' }
 resets text properties
 
static char underon [5] = {27, '[', '4', 'm', '\0' }
 underlines text
 
static char underoff [6] = {27, '[', '2', '4', 'm', '\0' }
 underline off
 
static char fgblue [6] = {27, '[', '3', '4', 'm', '\0' }
 blue text
 
static char fgcyan [6] = {27, '[', '3', '6', 'm', '\0' }
 cyan text
 
static char fgred [6] = {27, '[', '3', '1', 'm', '\0' }
 red text
 
static char fggreen [6] = {27, '[', '3', '2', 'm', '\0' }
 green text
 
static char fgdef [6] = {27, '[', '3', '9', 'm', '\0' }
 default text
 
static short debug_lvl = 1
 
- Protected Member Functions inherited from JSBSim::FGFCSComponent
void Delay (void)
 
void Clip (void)
 
void CheckInputNodes (size_t MinNodes, size_t MaxNodes, Element *el)
 
virtual void bind (Element *el)
 
static std::string CreateIndexedPropertyName (const std::string &Property, int index)
 
- Protected Attributes inherited from JSBSim::FGFCSComponent
FGFCSfcs
 
FGPropertyManagerPropertyManager
 
std::vector< FGPropertyNode_ptrOutputNodes
 
FGParameter_ptr ClipMin
 
FGParameter_ptr ClipMax
 
std::vector< FGPropertyValue_ptrInitNodes
 
std::vector< FGPropertyValue_ptrInputNodes
 
std::vector< double > output_array
 
std::string Type
 
std::string Name
 
double Input
 
double Output
 
double delay_time
 
unsigned int delay
 
int index
 
double dt
 
bool clip
 
bool cyclic_clip
 
static Message localMsg
 
static std::queue< MessageMessages
 
static unsigned int messageId = 0
 
static constexpr double radtodeg = 180. / 3.14159265358979323846
 
static constexpr double degtorad = 3.14159265358979323846 / 180.
 
static constexpr double hptoftlbssec = 550.0
 
static constexpr double psftoinhg = 0.014138
 
static constexpr double psftopa = 47.88
 
static constexpr double ktstofps = 1.68781
 
static constexpr double fpstokts = 1.0 / ktstofps
 
static constexpr double inchtoft = 1.0/12.0
 
static constexpr double fttom = 0.3048
 
static constexpr double m3toft3 = 1.0/(fttom*fttom*fttom)
 
static constexpr double in3tom3 = inchtoft*inchtoft*inchtoft/m3toft3
 
static constexpr double inhgtopa = 3386.38
 
static constexpr double slugtolb = 32.174049
 Note that definition of lbtoslug by the inverse of slugtolb and not to a different constant you can also get from some tables will make lbtoslug*slugtolb == 1 up to the magnitude of roundoff.
 
static constexpr double lbtoslug = 1.0/slugtolb
 
static constexpr double kgtolb = 2.20462
 
static constexpr double kgtoslug = 0.06852168
 
static const std::string needed_cfg_version = "2.0"
 
static const std::string JSBSim_version = JSBSIM_VERSION " " __DATE__ " " __TIME__
 
static int gaussian_random_number_phase = 0
 

Detailed Description

Encapsulates a gain component for the flight control system.

The gain component merely multiplies the input by a gain. The pure gain form of the component specification is:

<pure_gain name="name">
<input> {[-]property} </input>
<gain> {property name | value} </gain>
[<clipto>
<min> {property name | value} </min>
<max> {property name | value} </max>
</clipto>]
[<output> {property} </output>]
</pure_gain>
#define min(X, Y)
const char * name

Example:

<pure_gain name="Roll AP Wing Leveler">
<input>fcs/attitude/sensor/phi-rad</input>
<gain>2.0</gain>
<clipto>
<min>-0.255</min>
<max>0.255</max>
</clipto>
</pure_gain>

Note: the input property name may be immediately preceded by a minus sign to invert that signal.

The scheduled gain component multiplies the input by a variable gain that is dependent on another property (such as qbar, altitude, etc.). The lookup mapping is in the form of a table. This kind of component might be used, for example, in a case where aerosurface deflection must only be commanded to acceptable settings - i.e at higher qbar the commanded elevator setting might be attenuated. The form of the scheduled gain component specification is:

<scheduled_gain name="name">
<input> {[-]property} </input>
<table>
<tableData>
...
</tableData>
</table>
[<clipto>
<min> {[-]property name | value} </min>
<max> {[-]property name | value} </max>
</clipto>]
[<gain> {property name | value} </gain>]
[<output> {property} </output>]
</scheduled_gain>

Example:

<scheduled_gain name="Scheduled Steer Pos Deg">
<input>fcs/steer-cmd-norm</input>
<table>
<independentVar>velocities/vg-fps</independentVar>
<tableData>
10.0 80.0
50.0 15.0
150.0 2.0
</tableData>
</table>
<gain>0.017</gain>
<output>fcs/steer-pos-rad</output>
</scheduled_gain>

An overall GAIN may be supplied that is multiplicative with the scheduled gain.

Note: the input property name may be immediately preceded by a minus sign to invert that signal.

In the example above, we see the utility of the overall gain value in effecting a degrees-to-radians conversion.

The aerosurface scale component is a modified version of the simple gain component. The purpose for this component is to take control inputs from the domain minimum and maximum, as specified (or from -1 to +1 by default) and scale them to map to a specified range. This can be done, for instance, to match the component outputs to the expected inputs to a flight control system.

The zero_centered element dictates whether the domain-to-range mapping is linear or centered about zero. For example, if zero_centered is false, and if the domain or range is not symmetric about zero, and an input value is zero, the output will not be zero. Let's say that the domain is min=-2 and max=+4, with a range of -1 to +1. If the input is 0.0, then the "normalized" input is calculated to be 33% of the way from the minimum to the maximum. That input would be mapped to an output of -0.33, which is 33% of the way from the range minimum to maximum. If zero_centered is set to true (or 1) then an input of 0.0 will be mapped to an output of 0.0, although if either the domain or range are unsymmetric about 0.0, then the scales for the positive and negative portions of the input domain (above and below 0.0) will be different. The zero_centered element is true by default. Note that this feature may be important for some control surface mappings, where the maximum upper and lower deflections may be different, but where a zero setting is desired to be the "undeflected" value, and where full travel of the stick is desired to cause a full deflection of the control surface.

The form of the aerosurface scaling component specification is:

<aerosurface_scale name="name">
<input> {[-]property name} </input>
<domain>
<min> {value} </min> <!-- If omitted, default is -1.0 ->
<max> {value} </max> <!-- If omitted, default is 1.0 ->
</domain>
<range>
<min> {value} </min> <!-- If omitted, default is 0 ->
<max> {value} </max> <!-- If omitted, default is 0 ->
</range>
<zero_centered< value </zero_centered>
[<clipto>
<min> {[-]property name | value} </min>
<max> {[-]property name | value} </max>
</clipto>]
[<gain> {property name | value} </gain>]
[<output> {property} </output>]
</aerosurface_scale>

Note: the input property name may be immediately preceded by a minus sign to invert that signal.

For instance, the normal and expected ability of a pilot to push or pull on a control stick is about 50 pounds. The input to the pitch channel block diagram of a flight control system is often in units of pounds. Yet, the joystick control input usually defines a span from -1 to +1. The aerosurface_scale form of the gain component maps the inputs to the desired output range. The example below shoes a simple aerosurface_scale component that maps the joystick input to a range of +/- 50, which represents pilot stick force in pounds for the F-16.

<aerosurface_scale name="Pilot input">
<input>fcs/elevator-cmd-norm</input>
<range>
<min> -50 </min> <!-- If omitted, default is 0 ->
<max> 50 </max> <!-- If omitted, default is 0 ->
</range>
</aerosurface_scale>
Author
Jon S. Berndt
Version
$Revision$

Definition at line 217 of file FGGain.h.

Constructor & Destructor Documentation

◆ FGGain()

JSBSim::FGGain::FGGain ( FGFCS * fcs,
Element * element )

Definition at line 52 of file FGGain.cpp.

◆ ~FGGain()

JSBSim::FGGain::~FGGain ( )

Definition at line 127 of file FGGain.cpp.

Member Function Documentation

◆ Run()

bool JSBSim::FGGain::Run ( void )
overridevirtual

Reimplemented from JSBSim::FGFCSComponent.

Definition at line 136 of file FGGain.cpp.


The documentation for this class was generated from the following files: